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ABSTRACT

EXTENDING THE INFORMATION PARTITION FUNCTION:

MODELING INTERACTION EFFECTS IN HIGHLY MULTIVARIATE, DISCRETE

DATA

Paul C. Cannon

Department of Statistics

Master of Science

Because of the huge amounts of data made available by the technology boom in

the late twentieth century, new methods are required to turn data into usable infor-

mation. Much of this data is categorical in nature, which makes estimation difficult in

highly multivariate settings. In this thesis we review various multivariate statistical

methods, discuss various statistical methods of natural language processing (NLP),

and discuss a general class of models described by Erosheva (2002) called generalized

mixed membership models. We then propose extensions of the information partition

function (IPF) derived by Engler (2002), Oliphant (2003), and Tolley (2006) that

will allow modeling of discrete, highly multivariate data in linear models. We report

results of the modified IPF model on the World Health Organization’s Survey on

Global Aging (SAGE).
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1. INTRODUCTION

The explosive nature of exponential growth means it may only take a quar-
ter of a millennium to go from sending messages on horseback to saturating
the matter and energy in our solar system with sublimely intelligent pro-
cesses. The ongoing expansion of our future superintelligence will then
require moving out into the rest of the universe, where we may engineer
new universes. (Ray Kurzweil, qtd. in “The Intelligent Universe”)

1.1 The Information Age?

It is claimed that we live in the “information age,” but this era would be more

accurately called the “data age.” We are confronted daily with a data deluge that has

necessitated the creation of new jobs and special training to manage the overload.

Instead of using all available data, researchers often settle for a small, convenient

sample for research or decision-making. For example, millions of people use Google

every day to search the internet, but few look past the first two or three pages of

hits for information on the query. Most have neither time nor resources enough to

spend countless hours searching through millions of documents or web pages to glean

information, though there is certainly information buried in the millions of unchecked

documents.

New methodologies are necessary to transform large amounts of data into in-

formation and to lift us out of the data age. When new methods become available to

effectively use all available data, advances in science and technology will surge at a

potentially unprecedented rate.

1.1.1 Deterrents of the Information Age

One major deterrent of the information age is the vast and largely untapped

resource of information contained in textual documents. This huge data resource is

1
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largely unavailable in the statistical decision-making process. This problem has been

addressed by computer scientists in machine learning, artificial intelligence (AI), infor-

mation retrieval, and other fields. New statistical methodologies should be developed

in order to use the information contained in textual documents. Natural language

processing (NLP) is a scientific area concerned with the modeling and use of natural

language, either spoken or contained in text, in computer systems. A “natural” lan-

guage is a language that is spoken or written by humans for common communication.

Though NLP has received increased attention in many fields in the computer sciences,

it has not been studied much in statistics.

NLP is actually a special case of categorical data analysis. Identifiability issues

are very problematic when categorical data is highly multivariate. For example, if

a researcher asked a set of n individuals 18 yes/no questions, the researcher would

need to ask at least 218 = 262, 144 individuals if he or she wanted to make any good

inference on the population. The categorical nature of much of the data produced by

technological advances is a second deterrent to the information age.

1.2 Thesis Outline

In this thesis, we review statistical methods of natural language processing

(NLP), discuss various multivariate statistical methods, and discuss a general class of

models described by Erosheva (2002) called generalized mixed membership models.

We discuss the attributes shared by these models and discuss how they relate to

the proposed methodology of this paper. We then propose a modified version of the

information partition function (IPF) derived by Engler (2002), Oliphant (2003), and

Tolley (2006). This adaptation of the IPF will model highly multivariate discrete data

and is an effective way of reducing large amounts of data into a manageable format.

The modified IPF will allow modeling of the interaction effects of highly multivariate

discrete data and provide a way to more efficiently obtain updated probabilities of

2
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interest at the individual level. This quick updating is crucial for internet companies

and marketing applications.

The modified IPF can be used for several different applications. After describing

the modifications of the IPF, we demonstrate its use on the World Health Organi-

zation’s (WHO) Survey on Global Aging (SAGE). This dataset is used to show how

the modified IPF can be used when the response variable of the model is continuous

and when it is discrete.

For the continuous response case, the modified IPF is used in three ways. The

first analysis uses the giks from the IPF output as a summary variable of the obser-

vational factors in connection with main-effect variables from SAGE to build a linear

model for a continuous health score variable. The second analysis estimates the

giks using only the health-related variables from SAGE, omitting socio-demographic

variables, and defines three health sub-populations based on gik scores. The socio-

demographic variables are then used to build a generalized linear model (GLM) to

predict the probability of being in one of the health subgroups. This is similar to a

propensity score in the statistical literature (Rosenbaum and Rubin 1983). Thirdly,

the IPF is used with all of the variables and the giks are used to define small health

subgroups. These subgroups can be used by policy makers to determine how best to

focus resources to move individuals in a particular health subgroup toward a better

health subgroup.

The discrete response case demonstrates how the modified IPF is used when

the response variable is categorical. The health score variable is discretized based on

its quartiles. The IPF is then used to summarize the interaction effects as giks, and

the giks are used with the main effects in a GLM to predict the probability of being

in each health score quartile.

In Chapter 2 we discuss several multivariate statistical methods with an em-

phasis on latent variable models. Some developments from the 1960s in modeling

3
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interaction effects in linear models with categorical predictors are also discussed. In

Chapter 3 we provide an overview of natural language processing and current tech-

niques. In Chapter 4 we discuss the general framework of and review several types

of mixed-membership models, including the grade of membership (GoM) model and

its relation to latent class models and latent Dirichlet allocation (LDA). We also re-

view the hierarchical Bayesian structure of the mixed-membership model (HBMMM)

established in Airoldi et al. (2006) and discuss its representation of LDA and GoM.

We also review the Airoldi et al. (2006) formulation of a semi-parametric approach

to the HBMMM based on the Dirichlet process prior.

In Chapter 5 we review the IPF as established by Engler (2002), Oliphant

(2003) and Tolley (2006). In Chapter 6 we derive the modifications of the IPF and

show how it relates to mixed membership models and modeling interaction effects in

generalized linear models. In Chapters 7 and 8 we demonstrate the model with the

analysis of the SAGE data for the continuous and discrete cases, respectively.

4
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2. MULTIVARIATE METHODS

2.1 Introduction

In this chapter we review several methods of multivariate analysis that relate

to the proposed IPF model. In Section 1 we discuss two approaches to multivariate

analysis in general, then in subsequent sections elaborate on latent variable models,

finite mixture models, and hidden Markov models. We also discuss some relevant

work from the 1960s and ’70s about partitioning interaction effects in linear models.

The multivariate techniques relate to the theory and motivation of the IPF model,

and the interaction effect modeling relates to how the IPF model and its modifications

are used in data analysis.

2.2 Multivariate Analysis

Several techniques have been explored in multivariate statistics to reduce an

overwhelmingly large data space into something manageable. There are several ap-

proaches to this problem that have been developed in various scientific areas. Princi-

pal component analysis, for example, maximizes the variance of linear combinations

of the variables in a dataset based on the decomposition of a data matrix, X. This

is an example of a type of analysis that decomposes the data into fewer dimensions

based on eigenvalues.

Another approach is to model the observed data as a manifestation of unob-

served latent variables. That is, there is an underlying structure which cannot be

observed directly, but which provides the probability model for what is observed. For

example, in factor analysis the observed variables are modeled as linear combinations

of latent variables and are used to account for the correlation structure among the

5
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Table 2.1: This table shows the different types of latent variable models that exist
for different types of manifest variables and the assumed type of latent variable.

Latent Variable
Continuous Categorical

Manifest Continuous Factor Analysis Latent Profile Analysis
Variable Categorical Latent Trait Analysis Latent Class Analysis

manifest variables (Rencher 2002). This method takes advantage of the correlation

structure in the X matrix. These latent variable models relate to the IPF, and several

of these models are discussed in the following sections.

2.3 Latent Variable Models

A latent variable model is characterized by the assumption that what is observed

or measured on an individual is the manifestation of a set of latent variables that

cannot be measured (Bartholomew and Knott 1999; Loehlin 1998; Rencher 2002).

The type of models that fit into this category are determined by the type of observed

variables, called manifest variables, and the type of the assumed latent structure. For

example, a different model would be fit if the manifest variables were continuous and

the latent variables were assumed to be discrete than if the manifest variables were

discrete and the latent variables were assumed continuous. Table 2.1 shows which

models are used under different circumstances.

2.4 Finite Mixture Models

The latent profile model is actually part of a broader class of models called

mixture models. The form of the finite mixture model is formally defined as

p(y) =
k∑

i=1

ηip(y|θ), (2.1)

6
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where p(y|θ) is a probability distribution and the ηis are constrained to be greater

than zero and to sum to unity (Fruhwirth-Schnatter 2006). The θs parametrize the

distribution of the latent variables. This means that an individual, i, belongs to

the kth population with different probability distributions with probability ηk. A

finite mixture model is one that has a finite number of mixture components. Cluster

analysis is one of the most common uses of the finite mixture model. Many clustering

techniques are based on the decomposition of the overall variation in the data around

the mean into within and between sums of squares. The usual criterion for clustering

is to minimize the within sums of squares error for a specified number of groups. The

finite mixture model can then serve as a model-based clustering method (Fruhwirth-

Schnatter 2006; Loehlin 1998).

2.5 Hidden Markov Models

A hidden Markov model (HMM) is defined by a time- or space-dependent pro-

cess that consists of an unobservable state variable that determines the probability

model of the observed variables. It is a regular Markov process where the states are

not observed or observable, and the observed outcome is conditionally dependent on

this latent state. More formally, an HMM consists of an underlying Markov chain,

Xt, which governs the observed stochastic process, Yt, over time t ≥ 0. For example,

Yt might be normally distributed with mean and variance determined by the state of

Xt (Cappe et al. 2005). The conditional distribution of Yt given Xt is similar to the

finite mixture models discussed above, but it is also a function of time (Cappe et al.

2005; Elliot et al. 1995).

We now consider the Fruhwirth-Schnatter (2006) development of the HMM.

Consider the properties of the state variable Xt. This is a stationary Markov process

that can be defined by a transition matrix ξ, where

ξjk = Pr(Xt = k|Xt−1 = j).

7
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If Xt is an ergodic, irreducible, aperiodic Markov chain, its stationary distribution is

defined by a set of probabilities η = η1, ..., ηK , where

Pr(X0 = k|ξ) = ηk.

Let

Yt|Xt = k ∼ T (θk),

where T (θk) is a parametric distribution family and has density p(yt|θk). Thus, the

marginal distribution of Yt is

p(yt|ϑ) =
K∑

k=1

p(yt|Xt = k, ϑ)Pr(Xt = k|ϑ).

The unconditional distribution of Yt is then defined as a finite mixture of T (θ) distri-

butions with ergodic probabilities ηk. The HMM is then defined as

p(yt|ϑ) =
k∑

k=1

p(yt|θk)ηk. (2.2)

This looks very similar to the finite mixture model 2.1, but the ηks are ergodic proba-

bilities estimated as the components of an unobserved process. For HMM estimation

techniques, see the chapters on estimation found in Elliot et al. (1995), Cappe et al.

(2005), and Fruhwirth-Schnatter (2006).

A classic example of an HMM is the stock market, which is often described as a

bull or a bear market. The stock market could be modeled as a two-state HMM where

Wall Street investors would use different trading strategies depending on whether they

were in a bear or a bull market. This type of model is often called a Markov-switching

model where the conditional distribution of Yt+1 depends not only on Xt+1, but also

previous values of Y (Cappe et al. 2005). While Markov-switching models can be set

up in the framework of HMMs they are often treated as a separate class of models.

8
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2.6 Modeling Interaction Effects

The models discussed in the prior sections of this chapter deal primarily with

multivariate models that relate to the theory behind the IPF model. In this section we

review research that relates to how the modified IPF will be used to model interaction

effects.

Mandel (1969) describes a method of partitioning interaction in an analysis of

variance (ANOVA) situation when the response term is quantitative. Consider an

ANOVA with two factors. The typical ANOVA model is written as

yij = µ + αi + βj + ηij,

where µ is an overall mean, αi is the effect of factor A, βj is the effect of factor B,

and ηij represents the interaction between the two treatments. This reduces to the

additive model if ηij is assumed to be a random variable with mean zero and standard

deviation σ. Otherwise, according to Mandel, the interaction term can be partitioned

into a multiplicative component as

ηij = θuivj + θ′u′iv
′
j + θ′′u′′i v

′′
j + ... + εij

where εij is a random variable with mean zero and standard deviation σ.

The θs in this interaction term are estimated using the least squares estimation

of the residuals

rij = yij − µ̂ + α̂i + β̂j,

which is a vector, r. It turns out that under certain constraints of the ui and vj, the

estimates of θ′, θ′′, ... are the eigenvalues of S = rr′, and u is the associated eigenvector

(Mandel 1969). The vector, v, is shown to be the eigenvector of r′r. The interac-

tion terms are partitioned according to eigenvalues and eigenvectors. Gollob (1968)

develops a similar method of decomposing the interaction effects into multiplicative

components using principal components. Most of the work on this type of interaction

9
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modeling was done in the late ’60s and early ’70s and has not been developed much

since. The extensions of the IPF discussed in this thesis develop a new framework to

model interaction effects.

10
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3. NATURAL LANGUAGE PROCESSING

3.1 Introduction

In the last chapter we discussed multivariate statistical methods in general. In

this chapter we demonstrate how many of these methods have been specifically ap-

plied to the field of Natural Language processing. A “natural” language is defined

in the literature as a written or spoken language used for common communication

between humans. Natural Language Processing (NLP) consists of several steps for

understanding texts or spoken words: (1) morphological analysis, (2) syntactic analy-

sis, (3) semantic analysis, and (4) discourse integration. Statistical NLP incorporates

several probabilistic methods and models; each of these processes are used to obtain

better understanding of natural languages. Though there is not an integrated sys-

tem that performs all of these functions simultaneously, there have been advances in

statistical NLP that are helpful in each of the four aspects of NLP. These advances

provide insight into using textual documents to enrich statistical inference. This

chapter provides an overview of current statistical methods used in NLP for each

of the functions of NLP. In Section 1 we discuss the steps of NLP, and in Section

2 we discuss current research in statistical NLP. For a comprehensive treatment of

statistical NLP methods, see Manning (1999).

3.2 Functions of NLP

3.2.1 Morphological Analysis

Morphological analysis is designed to dissect individual words to help the re-

searcher derive meaning from those words. The primary use of morphological analysis

in NLP is word-sense disambiguation. This is the process of discovering the contex-
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tual meaning of individual words that have multiple meanings. For example, the

word “bank” could refer to the land adjacent to a river or a financial institution,

among other things (Manning 1999). While there have been several approaches to

word sense disambiguation, Hidden Markov Models (HMM) have become the most

widely used method and seem to outperform most other methods.

HMMs use the previous N words to predict the meaning of the (N+1)th word.

This is known as an N -Gram model, and such models are generally trained on a

corpus of text. A corpus generally includes thousands of published documents that

represent the type of text to be analyzed. Some common corpora include the Brown

corpus and the Wall Street Journal corpus.

3.2.2 Syntactic Analysis

Syntactic analysis considers sequences of words and how they relate to each

other within a sentence. This breaks a sentence into parts of speech and extracts

whatever meaning the word order contains. There are several probabilistic parsing

techniques, and there is some debate as to which is the optimal method. Optimality

is usually determined based on the individual problem. Probabilistic Context Free

Grammars (PCFG) are commonly used because they are simple and they lend them-

selves nicely to grammar tree structures (Manning 1999). PCFGs are also trained

from a corpus. The idea is to find the most probable sequence of words. The phrase

“The man sold the dog biscuits” has several possible meanings. A man could be (1)

selling a dog named Biscuits, (2) selling biscuits to a dog, or (3) selling dog biscuits.

PCFG’s would use the probabilities estimated from a corpus of one word being fol-

lowed by another (or possibly an N -gram model) to find the most likely parse. In our

dog biscuit example this process would discover the most likely direct object (what

is being sold).
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3.2.3 Semantic Analysis

Semantic analysis is the key to using information contained in textual docu-

ments in statistical analysis because it deals primarily with the meaning of a text.

Semantic analysis analyzes the structures generated by the syntactic processing and

derives the meaning of the sentence based on its structure. This is considered the

holy grail of NLP. It uses the syntactic and morphological analysis to determine the

most likely meaning of a sentence. Many models assume that there is a hidden or

latent semantic structure from which the words are generated. This assumption leads

to a latent variable approach to modeling semantics, borrowing heavily from models

developed in the social sciences and psychology, such as factor analysis and structural

equations. One such model is latent semantic analysis (LSA).

LSA boils a text down into its most fundamental components. It first strips

a text of all non-contextual words (eliminating words like “the,” “and,” “of,” etc.)

The meaningful words left over are then broken down into semantic root meanings,

thus incorporating morphological structure. Frequencies are often assigned weights

determined by frequency of occurrence in the document and frequency of occurrence

in the entire corpus. The most common weight is the tf-idf weight, which stands for

term frequency–inversed document frequency. The term frequency is calculated as

tf =
ni∑
k nk

, (3.1)

where ni is the number of occurrences of word i in a document and the denominator

is the total number of words in the document. The inverse document frequency is

calculated as

idf = log
|D|

|di ⊃ ti|
, (3.2)

where |D| is the total number of documents and |di ⊃ ti| is the number of documents

where word ti appears. The term weight tf-idf is calculated tf − idf = tf ∗ idf

for each term in the document. Thus, word counts are weighted by the relative
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frequency within the document and within the corpus. The weighted frequencies of

morphologically similar words in a contingency table are then used to group similar

documents using singular value decomposition (SVD) or factor analysis. Though

SVD and factor analysis work remarkably well, both methods require the assumption

of a Gaussian error structure, which is incorrect for count data. LSA can be thought

of as a variable reduction or classification method based on the underlying meaning

of a document, assigning each document a unique, latent “meaning” variable.

Hofmann (1999) proposes a probabilistic LSA (PLSA) based on the likelihood

principle, which is more appropriate for discrete data. PLSA models each word as

a sample from a mixture distribution where each mixture component represents a

topic. Mixture distributions in general define a probability distribution of the form

pX(x) =
K∑

k=1

akh(x|λk), (3.3)

with the constraint that ak ≥ 0 for all k = 1, ..., K, and
∑

k ak = 1, where K is

the number of components in the mixture and h(x|λk) is a probability distribution

parameterized by λk. For PLSA, the aks represent the proportion of the document

that belongs to a single topic. This means that a single document belongs to one or

more topics.

PLSA falls short as a complete language model because it only offers a prob-

abilistic model at the document level. PLSA is also prone to overfitting the train-

ing corpus because the parameter estimates of the mixture distributions are directly

linked to the corpus. Latent Dirichlet allocation (LDA), established by Blei et al.

(2003), is a generalization of PLSA. It is a model that extends topic sharing across

corpora and treats the mixture components as a random variable. This ameliorates

the problem of overfitting.

It should also be noted that both LSA and PLSA assume the number of la-

tent variables, K, is fixed and must be decided on before the analysis is performed.

Probabilistic approaches have been found to perform at least as well as regular LSA
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and have the benefit of a unified mathematical framework. De Freitas and Barnard

(2000) describe a Bayesian LSA that could potentially allow for K to be estimated

by the data. Each of these approaches, LSA, PLSA, and LDA, is a “bag-of-words”

method which does not exploit the phrase structure in documents.

3.2.4 Discourse Integration

Discourse integration describes how a sentence or paragraph is understood in the

context of a document or how a collection of documents relates to another collection.

Various types of hierarchical models are often used for discourse integration. LDA is

essentially a hierarchical mixture model and can add another layer of the hierarchy

to incorporate discourse integration.

3.3 Current Research in NLP

NLP is generally used to provide machines with the ability to use or under-

stand natural language. Though various statistical methods are used for different

components of NLP, there is not yet a unified model that will incorporate all of the

components of NLP. Recent research has made progress in the direction of a unified

language model. Wang et al. (2002) propose a model based on a latent maximum

entropy principle, which combines the syntactic N -gram model with latent seman-

tic analysis, allowing hidden features to be captured in the model. Erosheva (2002)

shows that probabilistic LSA is a special case of a more general class of models called

mixed-membership models. Mixed-membership models are extended to the hierar-

chical Bayesian framework in Airoldi et al. (2006). Both Erosheva (2002) and Airoldi

(2006) show that LDA also fits into the mixed-membership framework. This general

form of latent variable models can easily be extended to incorporate a hierarchical

structure into documents and corpora. Instead of assigning a document a latent

“meaning” variable, documents can have partial membership in topics, and topics
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can be shared across corpora. This methodology incorporates discourse integration

and semantic analysis. The GoM model and the Rasch model also fit into this general

framework (Erosheva 2006). The Rasch model is a variation on the latent class model

commonly used in psychology. In the next chapter we will discuss this general class

of models.

NLP models can easily be broken down into main topics because documents

generally have a stated purpose. By extending the IPF to model interaction effects,

we might better understand the more subtle nuances of the information contained in

documents. The rest of this thesis focuses on how to extend the IPF to model these

subtleties in categorical data generally, but the tools can be specifically applied to

NLP.
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4. GENERALIZED MIXED-MEMBERSHIP MODELS

4.1 Review

The general framework of mixed-membership models is established by Ero-

sheva (2002); Erosheva, Fienberg, and Lafferty (2004); and Airoldi et al. (2006), and

is a generalization of the finite mixed-membership models discussed in Section 2.3.

Mixed-membership models perform fuzzy or soft clustering. In many applications

it is unrealistic to assume that an observation belongs exclusively to a single clus-

ter or subpopulation. A scientific publication, for instance, might simultaneously

contain relevant information regarding chemistry, biology, and physics. This would

mean that the publication has partial membership in each cluster (chemistry, biology,

and physics). In the following section we will establish the general framework of the

mixed-membership model based on Erosheva et al. (2004) and Erosheva (2002).

The general formulation of mixed-membership models is based on assumptions

at the population level, the subject level, the latent variable level, and the sampling

scheme. The following assumptions are taken from Erosheva (2002) and Airoldi et

al. (2006).

4.1.1 Population-Level Assumptions

At the population level it is assumed that there is a latent structure responsi-

ble for the J manifest variables observed for each individual i, where i = 1, 2, ..., I.

Each of the k subpopulations, where k = 1, 2, ..., K, is characterized by a probability

distribution f(xj|θjk), where xj are the manifest variables for an individual and θkj

is a vector of relevant parameters. The observations are assumed to be exchangeable,

or conditionally independent, given class membership (Erosheva 2006). This means

that, given the class, individuals are independent.
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4.1.2 Subject-Level Assumptions

It is assumed at the subject level that each individual has a membership vector,

g = (g1, g2, ..., gK), which has length equal to the number of latent variables. Each

component of g represents the degree of membership in each of the latent groups.

The probability distribution of xj given the membership vector, g, is

Pr(xj|g) =
K∑

k=1

gkf(xj|θjk). (4.1)

The xj are assumed to be conditionally independent of one another given g.

4.1.3 Latent Variable-Level Assumptions

At the latent variable level the mixed-membership scores g can be assumed

to be fixed or random effects. For the fixed-effects mixed-membership model the

conditional probability of observing xj is

Pr(xj|g, θ) =
K∑

k=1

gkf(xj|θjk), (4.2)

where the gk are modeled as fixed effects.

In some cases it is reasonable to assume that the mixed-membership scores g

are random realizations from a distribution D parameterized by α. If this is the case,

the GMMM is a mixed-effects model with random effect g. For the mixed-effects

mixed-membership model,

Pr(xj|θ, α) =

∫ ( K∑
k=1

gkf(xj|θjk)

)
dDα(g). (4.3)

All types of mixed membership models including GoM, LDA, PLSA, and others

differ only in what assumptions are made at each of these levels.

4.1.4 Sampling Scheme

In some instances it is possible that there are multiple independent replica-

tions of the J manifest variables for an individual. The sampling scheme denotes
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{x(r)
1 , ..., x

(r)
J }R

r=1 as R replications of J variables of a subject. For the random effects

model the conditional probability of such a set of R replications is

Pr({x(r)
1 , ..., x

(r)
J }R

r=1|α, θ) =

∫ ( J∏
j=1

R∏
r=1

K∑
k=1

gkf(x
(r)
j |θjk)

)
dDα(g). (4.4)

It should also be noted that it is not necessary for J to be the same across subjects,

nor for R to be the same across observed variables.

4.2 Hierarchical Bayesian Mixed-Membership Models

Erosheva (2002, 2003) and Airoldi et al. (2006) detail the hierarchical Bayesian

mixed-membership model (HBMMM) representation of the GoM and LDA models.

PLSA is also discussed in Erosheva (2002). The hierarchical Bayesian model requires

specification of p(x|g, λ), prior distributions for λ and g, and hyper-prior distribu-

tions (depending on whether or not one is fitting the fixed effects or random effects

model). The assumptions concerning the nature of membership scores, whether they

are fixed or random, must be defined in this step. Because of the constraints on g,

the Dirichlet distribution is a natural prior choice; however, according to Erosheva

(2002) if complex dependencies exist between latent groups the Dirichlet may be a

poor choice.

Airoldi et al. (2006) discuss several strategies for model specification. One of

the main challenges of mixed-membership models is determining the number of latent

groups, K. If a researcher has strong prior belief and a strong understanding of the

underlying structure of a population of interest K can be chosen before the analysis.

However, in most unsupervised learning scenarios there is little knowledge of the

number of latent factors. Airoldi et al. (2006) suggest using a Dirichlet process prior

on the number of latent groups. This semi-parametric Bayesian approach allows for

K to be estimated from the data.
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4.3 The GoM Model

The grade of membership model was first introduced by Woodbury (1974).

Subsequent developments were made by Manton et al. (1994) which established the

GoM model in the framework of fuzzy set theory. Their model assumes that the

population of interest can be modeled as a set of extreme profiles, often called “pure

types.” In their model, the giks represent the degree of membership of each individual

i to the kth pure type. The gik scores vary between 0 and 1 over the k groups and∑k
k=1 gik = 1 for all individuals. If all elements of the set of giks is either 0 or 1, then

this reduces to a crisp cluster analysis. The likelihood of the GoM model is

L =
∏

i

∏
j

∏
l

(∑
k

gikλkjl

)yijl

, (4.5)

where both gik and λkjl are constrained to be greater than zero and to sum to unity.

This is noticeably similar to the fixed-effects version of the mixed-membership model

in equation 2.2.

Potthoff, Manton, and Woodbury (2000) generalize the GoM model by assum-

ing random membership scores generated from a Dirichlet distribution. Manton et

al. (1994) describe the unconditional likelihood of the GoM model for random mem-

bership scores as

L =

∫ ∏
i

∏
j

∏
l

(∑
k

gikλkjl

)yijl

dDα(g), (4.6)

integrating over the random gik scores. This is identical to what Erosheva (2002)

refers to as the “marginal” likelihood.

As a cautionary note, there is a major difference between the GoM model

and other clustering methods. Though the giks are bound between 0 and 1 and

constrained to sum to unity, they are not to be interpreted as probabilities. The giks

do not represent the probability of membership in one of K groups and are not to

be interpreted in the same way as discriminant function scores or other clustering
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methods. The giks are interpreted as the proportion of membership in each group.

For example, an elderly individual might be neither totally incapacitated nor totally

independent. That individual would have part membership in both groups if he or

she had difficulty with certain activities.

Erosheva (2002) develops the GoM model as a generalization of a latent trait

model. This is a subtle difference from the Woodbury (1974) and Manton et al.

(1994) formulations. Latent trait models are a type of latent class models that are

widely used in psychology and the social sciences. These models assume that there

are hidden, unobservable variables, such as intelligence or personality, that cannot

be measured directly. Erosheva (2006) proves the equivalence of a constrained latent

class model and the GoM model.

The modified IPF relates to the generalized mixed-membership models of Ero-

sheva (2002). Oliphant (2003) shows that the grade of membership (GoM) is a linear

approximation of the IPF and demonstrates the advantages of the IPF over the GoM

in analyzing discrete multivariate data. The generalized IPF is shown to be a category

of models for which mixed-membership models are linear approximations and can be

used for the same type of analysis as the generalized mixed-membership models.

4.4 PLSA and LDA

Erosheva (2002) shows how probabilistic latent semantic analysis (PLSA) and

latent Dirichlet allocation (LDA) are related and how they fit in the mixed-membership

framework. The joint likelihood of PLSA as derived by Hofmann (1999) is

L =
∏

i

∏
m

(∑
k

gikλkm

)yim

, (4.7)

which is essentially equivalent to the GoM likelihood in Equation 4.5. The LDA

likelihood derived by Blei et al. (2003) with a Dirichlet prior is

L =

∫ ∏
i

∏
m

(∑
k

gikλkm

)yim

dDα(g), (4.8)

21



www.manaraa.com

which is similar to the marginal GoM likelihood and the mixed-effects mixed-membership

model in Equation 4.3. Thus, according to Erosheva (2002), the LDA model is a

mixed-effects representation of Hofmann’s PLSA.
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5. THE INFORMATION PARTITION FUNCTION

The information partition function (IPF) has many similarities with a few of the

models discussed already in this thesis, but it has a very different motivation and

theory. Most of its theory comes from statistical mechanics and information theory

and is based on maximizing a quantity called entropy. In this chapter we discuss

entropy and develop the motivation of the IPF.

5.1 Entropy

In 1948, Claude Shannon revolutionized communication theory in a publication

for Bell Labs. A Mathematical Theory of Communication established a unified math-

ematical framework for information theory. Shannon (1948) established a quantity

called “entropy” defined as

H = −
∑

i

pilog(pi), (5.1)

where pi ≡ P{X = xi}. It is called entropy because of its relation to the thermo-

dynamic quantity of the same name in statistical mechanics. Shannon established

entropy as a measure of the uncertainty of a random variable in an information sys-

tem. Cover and Thomas (1991) provide a comprehensive introduction to information

theory and its general use in statistical inference.

5.1.1 Newton’s Second Law

In the first part of the twentieth century, physicists were struggling to apply

Newtonian physics to the motion of gases in contained systems and other subatomic

behavior. On such a micro level it was necessary to find a way to describe these

systems without ever knowing the exact path of particles. Quantum physicists had

accepted probability as a fact of subatomic particles and incorporated it into their

physical theories as if it were a necessary truth.
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In 1957 Edwin T. Jaynes used Shannon’s information theory to establish sta-

tistical mechanics as inferential science as opposed to a physical theory. Instead of

assuming that probability was part of the physical world, Jaynes established proba-

bility in mechanics as a measure of our limited state of knowledge. Physicists should

therefore find the probability distribution of the path of particles that imposes the

fewest assumptions about the system as a whole. Jaynes (1957) shows that maximiz-

ing entropy leads to the least biased estimator given our current state of knowledge.

In his words it is “maximally noncommittal with regard to missing information.”

Entropy, according to Jaynes, is “a unique, unambiguous criterion for the amount

of uncertainty represented by a discrete probability distribution.” Thus, finding the

probability distribution that maximizes entropy is the proper way to describe ther-

modynamic systems.

5.1.2 The Partition Function

The partition function is a formula physicists devised to analyze thermodynamic

systems (Oliphant 2003). It is defined as

Z =
∑

s

exp

(
−Es(V, N)

kT

)
(5.2)

and describes a link between the micro and macro levels. Es(V, N) represents the

energy of macro-state s with volume, V , and number of particles, N . T is the tem-

perature of the system and k is the Boltzmann constant. Equation 5.2 is essential in

deriving the information partition function.

5.2 The Information Partition Function

There are multiple ways to derive the information partition function (IPF). In

this section we review the approach followed by Oliphant (2003) and the approach

followed by Tolley (2006) to derive the IPF.
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5.2.1 Statistical Mechanics Approach

Consider a dataset containing a J-dimensional contingency table where the rows

are all possible combinations of responses to J questions. This is the same structure

as the data for the GoM model. Let l = (l1, l2, ..., lJ)t denote a vector of possible

outcomes such that l indexes the table of cells. Entropy is then defined as

H = −
∑

i

∑
l

pillog(pil) (5.3)

and is considered to be the information contained in the physical system (i.e. gas in

a container). Entropy adds across i because of independence across individuals. The

next step is to maximize entropy under the constraints∑
l

pil = 1 and (5.4)∑
i

∑
l

pilgik

∑
j

wkjlj = Ek, (5.5)

where wkjlj represents the distribution of a fixed amount of energy E of type k through

all the J elements of l. Equation 5.5 is known as the energy constraint and is used

in statistical mechanics in the equipartition theorem.

Using Lagrange multipliers λk for the energy constraint (5.5), k = 1, ..., K and

µi, i = 1, ..., n for constraint (5.4), the constrained Lagrange equation is expressed as

Lg = −
∑

i

∑
l

pillog(pil) +

∑
i

µi

(∑
l

pil − 1

)
+

∑
k

λk

(∑
i

∑
l

pilgik

∑
j

wkjlj − Ek

)
, (5.6)

which is maximized by finding the gradient of the Lg, ∇Lg, and setting it equal to

zero. This generates a system of equations with IL + I + K equations and the same

number of unknowns. The solution to this system of equations with respect to pil is

pil =
∏

i

exp(−
∑

k

gikλkwkjlj). (5.7)
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Now, define λkjlj = λkwkjlj as the posterior distribution of energy. Using the multi-

nomial identity, pil =
∏

j pijl, the likelihood is

L =
∏

i

∏
j

∏
l

exp(−
∑

k

gikλkjlj)
yijl (5.8)

with constraints ∑
l

exp(−
∑

k

gikλkjlj) = 1

gik ≥ 0∑
k

gik = 1. (5.9)

This is the information partition function as derived by Oliphant (2003). This likeli-

hood resembles a cross between the partition function (5.2) and the GoM likelihood

(4.5). Oliphant then shows that the GoM model is a linear approximation of the IPF

with an opposite slope using the MacLaurin expansion.

5.2.2 Intrinsic Data Model Derivation of the IPF

The second approach to the derivation of the IPF comes from Tolley (2006).

Consider the setup as a questionnaire of J questions given to N individuals. Each

question has a finite number, Lj, of possible answers. This questionnaire paradigm

corresponds to the statistical mechanics derivation, where N is the number of particles

in a contained system and Lj is the number of degrees of freedom of each of the

particles. Note that “degrees of freedom” here indicates the complete description of

particles in a microstate system, not the statistical quantity.

For the questionnaire example, j is the index of questions, and l is the answer

to question j; and let i indicate the individual responding to the set of questions. Xijl

is the random variable of answers of the jth question for individual i. Xijl = 1 if the

response to question j is l for individual i, Xikl = 0 if the response is otherwise.

Individuals are described by their answer profiles; l = (l1, ..., lJ) and Xil = 1 if

individual i has profile l.
∏

j Lj is the number of possible response profiles of a single
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individual. Let pil be the probability that individual i has profile l and let pijl be the

marginal probability of individual i answering question j with answer l; thus,

pijl =
∑
l:lj=l

pil. (5.10)

In the case that the individuals are randomly selected, the probability model becomes

a multinomial distribution with
∏

j Lj cells.

Suppes and Zanotti (1981) demonstrate that if a joint probability distribution

exists for the Xijl for all i, j = 1, ..., J , and l = 1, ..., L, then there exists a discrete,

finite-state random variable denoted by Z such that, conditional on Z, the answers

to the J questions are independent within an individual. In other words, for two

individuals with the same value of Z, we would get the same answers, up to random

noise, from both individuals responding to the questions. Z captures all of the infor-

mation about the two individuals up to random noise. From the Suppes and Zanotti

result, the Z variables are the set of intrinsic data that maximizes entropy because it

contains all information about the data without extraneous assumptions. It is pos-

sible to choose a subset of these intrinsic variables in such a way that the ignored

information is a marginalization that, if it satisfies the Cox axioms (Jaynes 2003),

is a probability distribution (Tolley 2006). The following definitions are required to

determine Z:

K = Number of the levels of Z,

πik = Pr(Z = k), k = 1, ..., K,

ωikjl = Pr(Z = k|Xijl = 1),

γikjl = Pr(Xijl = 1|Z = k),

λik = Lagrange multiplier for each k, k = 1, ..., K, and

µi = Lagrange multiplier for the sum of the profile probabilities.

With these definitions, Tolley (2006) formulated a family of probability models
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that represent the uncertainty due to model choice. There is uncertainty associated

with the choice of probability models, but the distribution that maximizes entropy

defined in Equation 5.1 is the model that uses the fewest assumptions possible on the

probability structure. Recall that entropy is a measure of uncertainty and, according

to Jaynes (2003), models that allow for little uncertainty limit the ability of the data

to speak for itself. Thus, the probability model that must be chosen is the one which

maximizes entropy with the constraint that the πik are fixed for all k. Tolley (2006)

provides the following lemma, which examines what it means to hold the πik constant

with regard to pil.

Lemma 1: Under the conditions above, if the random variable Z exists and J

is fixed, holding πik fixed for k=1,...,K is equivalent to holding

J∑
j=1

L∑
l=1

pijlωikjl = C, (5.11)

where C is some constant value.

Entropy is then maximized under the constraints in Equations 5.10 and 5.11

using Lagrange multipliers. The system of equations derived from differentiating the

Lagrange representation with respect to each pil is of the form

∂

∂pil

 N∑
i=1

∑
l

pilln(pil) + µi

(∑
l

pil − 1

)
+

 K∑
k=1

λik

J∑
j=1

Lj∑
l=1

∑
l:lj=l

pilωikjl − C

 = 0

(5.12)

for all i and l.

Solving for pil gives

pil = exp

(
−1− µi −

J∑
j=1

K∑
k=1

λikωikjlj

)
. (5.13)

In this expression, µi is the Lagrange multiplier for the constraint in Equation 5.10,

and λik is the Lagrange multiplier for the constraints associated with Equation 5.11.

The λik are the realizations of the random variable Z for individual i. Equation

(5.13) is used to parameterize the likelihood, which provides the basis for estimating
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realizations of Z. This is equivalent to the information partition function derived by

Oliphant (2003) up to a normalizing constant.

Because the IPF is derived from maximizing entropy it is a maximally non-

committal model for discrete, multivariate data. This is a desirable quality, especially

in an unsupervised learning language model. The IPF as developed by Tolley (2006),

Oliphant (2003), and Engler (2002) has huge potential to solve many problems and

overcome the weaknesses of the methods described in Chapters 2, 3, and 4. It has

already been shown to outperform GoM type models by Oliphant (2003), but there is

still room for improvement. In the next chapter we propose three crucial modifications

of the IPF that may make it an even more powerful tool in discrete data analysis and

statistical NLP. These changes will be a step forward in developing methodologies

that will help manage the data deluge.
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6. PROPOSED IPF MODIFICATIONS

6.1 Introduction

Though the IPF model has been shown to be extremely versatile and power-

ful, it still has room for improvement. In this chapter we propose two significant

modifications to the IPF that make this tool more efficient and adaptable by (1) ini-

tializing the IPF by using a non-parametric clustering algorithm and (2) overcoming

the dominance of main effects by removing a few of the most influential variables

prior to fitting the IPF. The IPF will be used to reduce large amounts of data into a

manageable format, allowing many of the the observational factor variables of highly

multivariate categorical data to be used in predictive modeling. This will provide a

way to get updated probabilities of interest at the individual level more quickly. In

this chapter we develop the proposed modifications of the IPF.

6.2 Modifications

One of the deficiencies of the original IPF algorithm is that it appears to be

overwhelmed by main effects. For example, in modeling the voting behavior of the

109th senatorial congress, the IPF easily divides Democrats and Republicans, as seen

in Figure 6.1. This is relatively uninteresting for the most part, though it does

highlight those who are truly moderate.

The goal of modifying the IPF is to expand its use in linear models with highly

multivariate categorical data. This provides a way to use all of the variables in a way

that might not be possible with other standard methods when the data are sparse.

The IPF is modified in two major ways: (1) by the initialization of the algorithm and

(2) through use of the IPF as a data reduction method to model interaction effects.
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Figure 6.1: Regular IPF output for the 109th US Senate
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These modifications also provide a way to update probabilities for individuals more

quickly. The following subsections discuss these alterations and their implications.

6.2.1 Initializing the IPF

The first way to modify the IPF is to improve the initialization of the giks and

the λs by using a non-parametric clustering algorithm. This will allow flexibility in

choosing the number of pure types, k, and finding initial clusters that will speed up

the maximization of the likelihood. As it stands, the IPF algorithm requires a variable

of interest which acts as the state variable to initialize the giks and the λs. This is

not quite the same as a response variable in linear models, but it does serve as an

initial grouping variable and is one of the variables in the data. In the questionnaire

derivation of the IPF, the initial state variable would be one question that is thought

to best separate the underlying groups. This variable also implicitly determines the

number of latent variables.

The modified IPF begins this initialization with a non-parametric clustering

technique, such as k-means or k-nearest neighbors. As discussed earlier this is not an

ideal analysis for discrete data, but this only serves as an initial step. The number of

pure types is chosen in this step. The state vector from the cluster analysis is used as

the initial state variable. In this thesis we use the CLARA algorithm, which is good

for large datasets.

6.2.2 Identifying Main Effects

It is not always immediately clear which variables will be removed from the

IPF model as main effects. There are two main ways in which main effects can be

determined. The first is to decide which variables to use based on prior knowledge.

Usually this is based on previous studies or conventional wisdom. For example, in the

World Health Survey on Global Aging (SAGE) likely main effects are gender, age,
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and location (urban/rural). These are identified as important main effects due to the

significance of these health factors in the literature.

In many other cases it is not clear which variables to use as the main effects.

For these situations, using mutual information can determine which variables best

account for the separation of groups. Mutual information is a quantity that measures

the interdependence of two variables and can be used iteratively to determine how

much of the variation between groups can be explained by adding another variable.

It is formally defined as ∑
y∈Y

∑
x∈X

p(x, y)log
p(x, y)

p(x)p(y)
. (6.1)

The top two or three variables that best describe the difference can be used as main

effects. Using a greedy algorithm, the variable that contributes to most of the vari-

ation between groups is selected first, then subsequent variables are put together as

a tuple. The next variable that best explains the separation of that tuple is selected

and added to the tuple. This continues until all of the variation between the groups

defined by tuples is accounted for. The first few variables that best describe variation

between groups can be selected as main effects.

After the main effects are determined they are set aside. If there is a response

variable it should also be removed from the data for prediction. The IPF algorithm is

then used to reduce all remaining variables into giks. Neither the prediction variable

nor the main effects are used in calculating the giks. The data are then set up as a

contingency table with the main effects and the response variable with the giks acting

as covariates.

Once the IPF model is fit, the giks are easily estimable for a new observation.

A polytomous logistic regression model is fit using the X variables to predict the

individual’s giks. A classification tree can also be used. Once the giks are fit for the

new individual, that individual’s response can be predicted using regular categorical

data analysis techniques.
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This adaptation of the IPF combines a powerful, sound data-reduction tech-

nique with the flexibility of categorical data analysis. After the model is fit, secondary

analyses can be performed on the giks to determine regional mutual information. That

is, individuals with similar giks will tend to exhibit common behavior and could be

defined by similar profiles. These profiles can be determined by using mutual informa-

tion to determine which variables best define membership in a cluster of individuals

with similar gik profiles.

In the next two chapters, we describe two illustrative datasets and demonstrate

how the modified IPF algorithm can be used to analyze these types of data. In

Chapter 7, the SAGE data analysis illustrates how the modified IPF is used as a

predictive model. In Chapter 8, the WHS data analysis shows how policy-makers

could use this methodology.
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7. SAGE: CONTINUOUS RESPONSE

7.1 Introduction

In this chapter, the SAGE data is described and the modified IPF is used to

build a predictive model to determine an individual’s health score. Section 1 provides

discussion about the SAGE data, mentions two questions of interest to the WHO,

and describes how the modified IPF is used to answer those questions. Sections 2

and 3 discuss the results of the modified IPF is answering the WHO questions. These

analyses are a unique and informative method of data analysis that should provide

decision-makers with the information needed to assist in understanding various health

subgroups in aging populations. Section 4 discusses the results from a simulation

study that compares the predictive root mean squared error for two different models.

7.2 SAGE

The Study on Global Aging and Adult Health (SAGE) by the World Health

Organization (WHO) is designed to determine the health status of individuals in

aging populations. It is necessary for the WHO to provide relevant information to

decision-makers in order to prepare for an aging population.

The data contain information from 23 survey variables for 1,437 individuals in

a pilot study. These variables include age group, sex, urban/rural location, education

level, marital status, 4-meter walk time, number of overnight stays in a health care

facility, number of inpatient and outpatient visits, activities of daily living (ADLs),

and responses to several self-reported health questions about arthritis, angina, stroke,

and others. The response variable is health score and is a continuous score based

on the responses to a series of self-reported health questions exogenous to the data
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analyzed here. The score is between 16 and 67 where a lower score represents better

health.

In discussing the SAGE data with WHO researchers, we discovered two major

questions of interest: (1) how to build a linear model to predict health score based on

the survey data and (2) how to define health subgroups to help policy-makers better

understand how to allocate resources. The modified IPF can be used to answer each

of these research questions. The first analysis uses the giks from the IPF output as a

summary variable of the observational factors in connection with main effect variables

from SAGE to build a linear model for a continuous health score variable. Secondly,

the IPF is used with all of the variables and the giks are used to define small health

groups. These subgroups can be used by policy makers to determine how best to

focus resources to move individuals in a particular health subgroup toward a better

health subgroup.

7.3 Health Score Linear Model

For the SAGE analysis, the IPF was first fit using all of the variables. A second

IPF model was fit ignoring the three main effects age, sex, and location. The models

were compared to see what changes, if any, occurred in the structure of the giks.

The IPF models for both cases were initialized using the cluster vector from a non-

parametric, large-sample clustering algorithm (CLARA). We chose five clusters, which

translate into five pure types in the IPF. The cluster vector was used to initialize the

groups and determine the number of pure types in the model. Figure 7.1 shows four

views of the data from the full model in gik space. It is colored by sex to demonstrate

the dominance of the main effects. The full model shows dominant separation based

on gender. This might not be too problematic in some situations, but a more sensitive

model might reveal more subtleties in the data.

For the reduced model, we estimated the giks for the SAGE data while ignoring
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Figure 7.1: Four views of IPF clusters based on the all of the variables, colored by sex to
show the dominance of main effects.
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age, gender, and location. Health Score (SRH16) was also ignored in order to be used

in the analysis of covariance (ANCOVA) model discussed later.

Removing the main effects did not significantly alter the overall structure of the

giks, but it did smear things out slightly. Figure 7.2 shows scatter plots for each of

the giks plotted against each other for both the full model and the interaction model.

Notice that the structure is similar overall, but the interaction model has smoothed

out the influence of the main effects. This hyperbolic shape shows the underlying

distribution of the interactions and serves as an effectual “health spectrum”.

One of the main problems of categorical data analysis in highly multivariate

settings is the identifiability of parameters in sparse contingency tables. The modified

IPF is an effective way to model interaction effects in cases where there is sparse

categorical data. The giks from the IPF output represent the information contained

in the variables. This includes the information contained in the main effects of those

variables as well as the interaction terms. The IPF algorithm is used to reduce the

dimensionality of the interaction terms into continuous variables, namely the giks,

and use the giks in connection with the main effect variables in an ANCOVA setting.

The logarithm of health score was found to be approximately normally distributed,

as shown by a normal probability plot in Figure 7.3. For this analysis, ANCOVA was

performed using log(SRH16) as the response.

7.3.1 Results

Table 7.1 shows the Type I and Type III sums of squares for the ANCOVA

based on the log of SRH16. The first gik was removed to avoid multicollinearity

because of the constraint that the giks sum to unity.

We also performed a stepwise variable selection using the AIC as a selection

criterion, which showed that the first and the third giks were the most important

variables in determining health score, even more so than the main effects. This
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(a)

(b)

Figure 7.2: Scatterplots of each gik plotted against each other for the full model (a) and
the interaction model (b). Notice the similar overall structure. This shows that removing
the main effects smooths out the individual giks without losing the overall structure.
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(a)

Figure 7.3: Normal Probability Plot of the Log(SRH16). The normality assumption seemed
adequately reasonable for ANCOVA.
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Table 7.1: Type I and Type III sums of squares for the ANCOVA model using
log(SRH16) as the response. X2, ..., X5 represent the gik effects.

Source DF Type I SS Mean Square F Value Pr > F
age 4 19.571 4.893 99.53 <.0001
q1025-sex 1 11.722 11.722 238.46 <.0001
q0104-ur 1 0.582 0.582 11.84 0.0006
X2 1 21.920 21.920 445.90 <.0001
X3 1 26.253 26.253 534.04 <.0001
X4 1 1.445 1.445 29.40 <.0001
X5 1 0.228 0.228 4.63 0.0316

Source DF Type III SS Mean Square F Value Pr > F
age 4 0.844 0.211 4.29 0.0019
q1025-sex 1 0.368 0.368 7.49 0.0063
q0104-ur 1 1.080 1.080 21.96 <.0001
X2 1 2.507 2.507 51.01 <.0001
X3 1 13.980 13.980 284.39 <.0001
X4 1 1.153 1.153 23.46 <.0001
X5 1 0.228 0.228 4.63 <.0316

Table 7.2: Stepwise Selection Summary

Effect Effect Number Number
Step Entered Removed Effects In Parms In AIC
0 Intercept 1 1 6629.3025
1 X1 2 2 5777.6297
2 X3 3 3 5617.6481
3 q0104.ur 4 4 5603.2401
4 X5 5 5 5591.1239
5 age 6 9 5586.9166
6 q1025.sex 7 10 5583.6809*
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Table 7.3: Type I sums of squares for the model y = gi1 + gi3 + gi5 + sex + age + ur.
The main effects are put last in order to determine the relevance of the main effects
after adjusting for the most important giks.

Source DF Type I SS Mean Square F Value Pr > F
X1 1 62.90566460 62.90566460 1278.74 <.0001
X3 1 16.19840160 16.19840160 329.28 <.0001
X5 1 0.39118133 0.39118133 7.95 0.0049
age 4 0.66802250 0.16700563 3.39 0.0090
q1025 sex 1 0.32970468 0.32970468 6.70 0.0097
q0104 ur 1 1.12917478 1.12917478 22.95 <.0001

indicates that the information contained in the giks, or the summary of the interaction

terms, is as important as the main effects. Table 7.2 shows the results.

Because gi1 was omitted in the original model shown in Table 7.1 and found to

be a significant predictor, we reran the linear model to examine the Type I sums of

squares for the model y = gi1 + gi3 + gi5 + sex + age + ur. The main effects were

placed last in the model after gi1, gi3, and gi5 in order to see the strength of the main

effects after adjusting for the giks. Table 7.3 shows the Type I sums of squares. It is

clear that the effects of gi1 and gi3 are much more practically significant than the rest

of the variables.

7.4 Predictive Results

Using the giks as summary variables of many discrete variables in linear models

seems to work well, but it is possible that using one or two raw variables might do

as well. To test the difference in predictive power between the model that uses giks

as covariates and the model with the best predicting raw variables, we performed

a simulation study. To determine which raw variables best predicted health score,

a stepwise variable selection method was used. Sex, “activ”, and lungs were the

three variables selected for the model. The variable “activ” is the response to the

question “Overall in the last 30 days, how much difficulty did you have with work or
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household activities?” . Possible responses include none, mild, moderate, severe, and

extreme/cannot do. “Lungs” is the answer to the yes/no question “Have you ever

been diagnosed with chronic lung disease?”

After deciding which variables to use, the predictive power of the models

y = gi1 + gi3 + gi5 (7.1)

and

y = sex + activ + lungs (7.2)

were compared in a simulation study. Only the best three of the giks were used to

make the models comparable in the number of variables.

We then performed a simulation study for each of these models. Each simulation

run (1) randomly removed 100 of the 1,437 observations, (2) fit the model using

the remaining 1,337 observations, (3) used the model to predict the health score of

the 100 omitted observations, and (4) calculated the predictive root mean squared

error (RMSE). This process was repeated for 1,000 samples. Figure 7.4 shows the

distributions of the predictive RMSE. The blue line represents the gik model and the

red represents the best subset model. The gik model outperforms the best subset

model even without the use of the main effects. This shows that there is a lot of

information contained in the giks.

7.4.1 Adding Main Effects

It was also of interest to see if the predictive model was improved by adding

the main effects to the model that only used giks. Another simulation was performed

adding the main effects to the gik model. The results are shown in Figure 7.5. The

predictive RMSE is practically unchanged when we add the main effects to the base

model containing only the giks. This is further evidence of the strength of the infor-
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Figure 7.4: Predictive RMSE. Comparing simulation results for two models. The blue
represents the model y = gi1 + gi3 + gi5 and the red represents y = sex + activ + lungs.
Notice that the model with the giks outperforms the best subset model even without using
the main effects. This shows that there is a lot of predictive information contained in the
giks.
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Figure 7.5: Predictive RMSE comparing simulation results of the gik-only model and the
gik model with main effects. The blue represents the gik-only model, and the red represents
the same model with the main effects. There is practically no difference in predictive RMSE.
This is further evidence that the giks contain a lot of information
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mation contained in the giks. This is not surprising in light of Table 7.3, which shows

that the main effects are not nearly as practically significant.

7.5 Health Sub-Groups

The modified IPF can also be used in exploratory data analysis. After a model

was fit, a secondary cluster analysis was performed on the giks to define health sub-

groups. After running several cluster analyses, 15 clusters seemed to break up the

data into reasonable subgroups. The purpose of this secondary cluster analysis is to

determine what variables define subgroups within gik space. Figure 7.6 shows the

interaction model colored by health sub-groups.

After fitting the IPF to the interaction variables, it was of interest to determine

the meaning of the health subgroups based on the giks. The variables that best

distinguish membership in these groups were determined using mutual information

which iteratively finds which variables best describe group membership. Table 7.4

shows the variables and the levels of variables that characterize each of the clusters.

The variables listed for each of the clusters are those that account for at least 90% of

the variation between the groups. The three bolded variables for each cluster are the

variables that best describe that group.
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(a) (b)

(c) (d)

Figure 7.6: IPF clusters based on the interaction variables and colored by health sub-group.

47



www.manaraa.com

Table 7.4: Cluster Meanings: most of the variation between groups is explained by seven or fewer variables. This table shows
the variables and the levels of the variables that best describe each of the clusters. The bold-faced variables are the three most
important for each cluster. The listed variables account for at least 90% of the variation for that group.

HS ADLs 4m times activ health education outp mar.stat
Clust 1 27.20 39.28 5.96 4.63 None-Mild Moderate
Clust 2 28.74 41.77 6.04 2.62 Moderate-Mild
Clust 3 32.80 50.84 5.83 4.74 Mild-Moderate
Clust 4 22.79 34.64 None-Mild Good-Moderate ≤ 2nd Compl
Clust 5 20.76 30.73 4.78 Good ≤ 2nd Compl Half and Half
Clust 6 39.27 61.61 6.99 4.04
Clust 7 20.56 29.51 4.33 2.35 Good ≤ 2nd Compl
Clust 8 30.22 44.86 5.13 2.59 Mild-Moderate Mar-Wid
Clust 9 35.69 54.80 5.82 4.99 Wid-Mar
Clust 10 27.53 40.74 5.03 2.50 ≤Primary Compl
Clust 11 45.30 74.08 7.88 Severe
Clust 12 34.11 52.27 5.24 3.12 Moderate
Clust 13 18.15 26.23 3.69 Good Uniform Yes Mar
Clust 14 24.67 38.28 5.05 3.15 ≤ 2nd Compl
Clust 15 24.79 34.41 5.21 Good-Moderate No Formal No
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8. SAGE: DISCRETE RESPONSE

8.1 Introduction

This chapter demonstrates how the modified IPF can be used when the response

is categorical. Section 2 outlines the parts of the GLM. The last section shows a

simulation study to test the predictive power of two models. The first model uses

only two giks as predictors, and the second uses the two best variables, determined

by a forward variable selection process.

8.2 Generalized Linear Model

For this analysis, the health scores were broken up into quartiles and a GLM

was fit using the main effects and the giks. These giks are the same as those used

in Chapter 7. Table 8.1 shows the parameter estimates and standard errors for the

model. The model shows the probability of having a lower health index.

8.3 Predictive Results

As with the continuous response case, we performed a simulation study to

test the predictive performance of GLM using the giks and the GLM using the best

subset model. The same procedure was followed as before, but a forward selection

method was used to determine which raw variables best predict health score quartile.

Each simulation predicted which category the omitted observations would be in. The

prediction was classified as either “right,” “close,” or “wrong.” Because of the ordinal

nature of the categories, predicting a 3 when the individual was in Category 4 is better

than predicting a 2. A prediction that was within one place of the true category was

classified as “close.” Figure 8.1 shows the prediction distributions for correct, close,
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Table 8.1: Parameter estimates for the GLM using the health score quartiles. The
model shows the probabilities of having a lower health index.

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept1 1 -6.45 0.5471 -7.5265 -5.3818 139.17 <0.0001
Intercept2 1 -4.635 0.5431 -5.6998 -3.5707 72.83 <0.0001
Intercept3 1 -2.777 0.5280 -3.8127 -1.7428 27.67 <0.0001
age 18-49 1 0.6499 0.3872 -0.1091 1.4088 2.82 0.0933
age 50-59 1 0.5712 0.2258 0.1287 1.0137 6.40 0.0114
age 60-69 1 0.5729 0.2250 0.1318 1.0139 6.48 0.0109
age 70-79 1 0.1504 0.2356 -0.3114 0.6121 0.41 0.5234
age 80+ 0 0.0000 0.0000 0.0000, 0.0000 . .
q1025-sex Female 1 -0.2311 0.1116 -0.4498 -0.0124 4.29 0.0383
q1025-sex Male 0 0.0000 0.0000 0.0000, 0.0000 . .
q0104-ur Rural 1 0.4239 0.1050 0.2181 0.6296 16.30 <0.0001
q0104-ur Urban 0 0.0000 0.0000 0.0000, 0.0000 . .
X2 1 5.8502 1.0003 3.8897 7.8107 34.20 <0.0001
X3 1 9.8560 0.7285 8.4281 11.2839 183.03 <0.0001
X4 1 3.5841 0.9676 1.6876 5.4805 13.72 0.0002
X5 1 2.7801 1.4458 -0.0537 5.6140 3.70 0.0545
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and wrong predictions. It also shows the distribution of the fitted model’s Akaike

Information Criterion (AIC). The blue line is the distribution for the results of the

model: srh = sex + gi1 + gi3 + gi5. The red is the distribution for the model

srh = sex + activ + angi + lungs. They both seem to get about the same number

of predictions correct, but the model with the giks gets more predictions close and

consequently fewer wrong.

The AIC is the likelihood penalized for the number of parameters in the model.

It is a measure of model goodness of fit, and a model with smaller AIC is preferable.

Figure 8.1a shows that the AIC is much lower in all simulation cases for the model

which uses the giks.
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Figure 8.1: Simulation results for the discrete response case. Results from 1,000 samples
of the SAGE data. The blue is the distribution for the results of the model srh = sex + gi1
+ gi3 + gi5. The red is the distribution for the model srh = sex + activ + angi + lungs.
They both seem to get the same number correct, but the model with the giks gets more
predictions close and, consequently, fewer wrong.
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9. CONCLUSION AND DISCUSSION

In this thesis we have introduced a new, powerful method of using highly multivariate

discrete data in linear models. We extended the Information Partition Function to

be used as a way to represent all the information contained in the interaction terms

of the World Health Organization’s SAGE data and have demonstrated how powerful

the giks are in predicting health status.

There are several applications of the extended IPF that were not treated in

this thesis. Further research in these applications might prove beneficial in moving

us into the information age. Applications in natural language processing might help

make the millions of online textual documents usable in statistical analysis. Other

web-based applications such as collaborative filtering might also help to customize

the internet for individual users.
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